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Abstract. Using a membrane theory, an analytical solution is reached for the deformation of a packer membrane
reinforced with inextensible cords. This model gives the deformation of the membrane and the levels of strain and
stress in the membrane and the cords. The model enables one to study the influence of the various design
parameters on the behaviour and integrity of the packer. Based on the outputs of the model, packer design
suggestions are made which are expected to be of practical significance.

Notation

2h 0 initial membrane thickness (L); W strain energy (ML - T 2 ); Al meridian extension; 2 radial extension; A2
maximum A2, i.e. packer expansion ratio; 21, initial membrane length (L); P relative inflation pressure (ML ' T 2);
r tension in cords (ML T-2 ); A initial spacing between cords (L)

1. Introduction

To carry out pressure testing or hydraulic fracturing tests in an oil well, composite inflatable
packers are often used to seal off and apply specified pressure to the wall of either uncased
or cased wellbores. To undergo the requisite expansion (3:1 expansion), the packers need to
be designed to be failsafe and reusable at high pressures. This paper is concerned with a
membrane analysis of composite packers under actual downhole conditions and serves as an
example of how the large deformation theory of reinforced composites can be applied.

To attempt a relatively simple analysis of the deformation of the packer as it is deformed
downhole, we discuss below the consequences of applying a membrane theory of a fibre
reinforced rubber packer. The basic theory for reinforced membranes has been outlined by
Kydoniefs [1]. This theory enables one to calculate the expanded shape of the membrane as
a function of the internal pressure given the expression for the strain energy function of the
elastomer (this is to be obtained from experiment) and the shape and distribution of the
cords. The theory also enables the tension in the cords and in the elastometer material to be
calculated.

2. General equations

Axisymmetric deformations are considered of an initially cylindrical membrane of uniform
thickness 2ho composed of an elastic homogeneous isotropic and incompressible material
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possessing a strain energy function W = W(I,, ,12) and reinforced by two families of perfectly
flexible and inextensible cords.

The cords of the two families are assumed to form constant angles +a with the generators
of the undeformed membrane. It is also assumed that the lengths of the intercepts on any
one cord of the one family by two adjacent cords of the other family are independent of the
position on the surface and that these lengths are small compared with the radii of curvature
at any point of the deformed or undeformed membrane. Moreover, it is assumed that no two
cords of the same family are brought into contact as a result of the deformation and that
intersecting cords of the two families do not move relative to each other at their point of
intersection.

As any cylindrical membrane can be deformed into a circular cylinder without extension
on its surface, it can be assumed, without loss of generality, that the undeformed membrane
is a circular cylinder.

We refer the deformation to cylindrical polar coordinates and denote by (p, 0, 7),
p = constant, the coordinates in the undeformed configuration of a point which has
coordinates (r, 0, z) in the deformed state. Because the deformation is axially symmetric

r = r(q) , z = z(-7) . (1)

The elements of length in the undeformed and deformed configurations will be denoted by
dS and ds, respectively. The angle of dS with the generator of the undeformed membrane
will be denoted by a and the element of the deformed meridian by d{. It can then be shown
[1, 2] that

()) = Al(cos(a)) + A2(sin(a) 2 (2)

where the notation

Al = d/d 7 , A2 = rp (3)

has been used.
From the symmetry of the system and the incompressibility of the material it follows that

Al, A2 and A3 = (AlA 2) - 1 are the principal extension ratios in terms of which the strain
invariants I are given by

I, = A + A + A (4)

2 = A 2 + A 2 + A3- 2 (5)

Since the cords are inextensible, for a = a we obtain

A2(cos(a)) 2 + A2(sin(a))2 = 1 (6)

which gives A in terms of A2 and a.
Let +-/3(7) be the angles of the two families of cords with the meridian of the deformed

section. Then, if dS, ds are on the same cord,

r sin(a) dS = p sin(,3) ds (7)
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and

cos(/5) ds = d = A, cos(a) dS (8)

From these relations we obtain

sin() = A2, sin(a) (9)

and

cos(/3) = A cos(a) (10)

Let A and denote the distance between adjacent cords in the undeformed and deformed
membrane, respectively. From

A = pcos(a) dO, =rcos(,/)dO

and the above relations for sin and cos , we get

6= A1A2 (11)

A further assumption is that the meridian C of the deformed membrane does not intersect
the z-axis and it has no finite element parallel or perpendicular to the z-axis. Moreover, and
without loss of generality, it is assumed that the tangent to C is nowhere parallel or
perpendicular to the z-axis, except perhaps at an end point of C; otherwise C may be divided
into segments for which this condition does hold. This condition will be relaxed somewhat
when we consider the situation when the expander meets the casing. With this assumption
the equations of equilibrium

d dr
d(rT) = T2 (12)

and

K1T 1 + K2T2 = P (13)

which are valid for any axisymmetric deformation of a membrane, can be written in the form

d
dr (rT,) = T2 (14)

and

K1T 1 + K2T2 = P (15)

where T, T2 are the stress resultants, per unit length of the deformed membrane, in the
directions of the meridian and the circle of latitude, respectively, K. the principal curvatures,
K1 being the curvature of the meridian, and P is the internal pressure. If co < rr/2 denotes the
angle formed by the tangent to the meridian of the deformed membrane and the axis of
symmetry then

d
K = dr cos(o) (16)
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cos(o)
K2 = cos(W) (17)

By using (3), (16) and (17) the equations (14) and (15) are reduced to

d d
dA 2 (A2 T 1) = T2 , d- (A2T, cos(o))= PpA2 (18)

The stress resultants T can be resolved into two parts:

T, = T' + T." (19)

where T' is due to the deformation of the material and can be expressed in terms of the
strain energy function W by

±A+ aWh 2h0 8W (20)T = 4hoA3(A - A3) a + A2a2 ) A2 A(20)
1ll2 812 A2 aAl

and

2 W 20W 2h, aw
T = 4hOA3(A - A3)(- + Al --2) -- 1 0 2 (21)2 2 3 aj 1 -a2 A a 2

and T" is due to the tension in the cords. These expressions can be written in the form

2A1 Cos 2 a 2A2 sin2a
T' A r, T 2As (22)

By using (19) to (22) the first equation of equilibrium (18) can be solved [3] giving

Aho(W- A(aW/aA,)) + A
r= -(23)

1 - A2 sin2 a

where A is an integration constant. From the definition of the invariants (4) and (5) together
with Al given in terms of A2 from (6) and the expressions (22) and (23) we get T as
functions of A2. This together with the expressions (20) and (21) give the forces Ta in terms
of A2 and the integration constant A. It remains to integrate the second of equations (18) to
obtain co in terms of A2 for a given set of boundary conditions.

2.1. Applications

As indicated above we still need to integrate the second of (18) to proceed with the solution
to a given problem. For a membrane loaded under constant pressure P this gives

P 2A2T cos(w)= 2 (3A - C) (24)

where C is an arbitrary constant. For the free end condition on the packer A2 = 1 and the
corresponding force in the axial direction should be zero. Hence

T1 cos(w) = 0 (25)
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Aen A2 = 1. Thus the constant

C = 1. (26)

Since in addition w = 0 when A2 = A2, the maximum expansion ratio of the membrane for a
given pressure, then (24) can be written

A2 (T)A2 = -1) (27)

Recall from equations (20) and (22) that

aw 2A1 cos2 a
A2T = 2 ho A + A (28)

This gives the constant A using (23) and (27) then (24) gives cos(w) and the shape and other
properties of the membrane follow by performing the integrals outlined below and solving, if
necessary, the appropriate non-linear equation. For the case of a membrane expanding
freely this amounts to solving the equation for the specified initial length of the membrane.

The strain energy function
To proceed further we need an expression for the energy density of the elastomer. This has
been deduced from experimental tests. A representative, in SI units, is

W = 0.24 106(I1 - 3) + 0.0084 106(1, - 3)2 (29)

Using this expression we can deduce the force functions in the elastomer from the equations
(20) and (21).

2.2. The shape of the expanded membrane

Once the angle co has been obtained from (24) the shape of the membrane can be
determined provided the maximum expansion A2 has been found. For the cases of a
membrane expanding under a specified pressure the condition that determines A2 is that the
initial length of the membrane is specified as 210 say. Then

P f A2sin(X) (30)P - 2 A sin() '

To effect a solution of this equation, it is helpful to have an estimate of the range of values in
which a solution may lie. For the case a = 0, a lower bound for the pressure P to provide a
maximum expansion ratio A2 can be deduced as

4h ( W ) _ (31)
P a(A

The shape of the deformed membrane is determined by plotting A2, the expansion ratio rip,
versus z the axial coordinate in the deformed coordinate system where
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= cot(cw) dA2 (32)

and the plus or minus sign is used according to whether A2 is an increasing or decreasing
function of 6 and 0 = 0 for z = 0. The length e of the deformed (semi) meridian is given by

P = JA sin(w) (33)

As stated above for the free expansion of the packer one must solve equation (30) for the
maximum expansion ratio A2. However, for the situation, when the packer expands against a
rigid casing the procedure is different [4]. For this case A2 is specified and the half length of
the central section which is in contact with the wall is given by

zo=(io+pf' 1 dA 2 ) Al. (34)
z ° l P2 A, sin(w))A (34)

In the above equation the factor Al outside the integral sign is evaluated at the maximum
expansion ratio A2. The shape of the rest of the membrane is determined as above except
that now z given by equation (32) is replaced by z + z0 .

3. Numerical results and engineering considerations

To give some perspective on the kind of results predicted by the membrane theory, three
cases of inflation have been considered for four values of cords angle a. The influence of a is
of particular interest from a design stand point. For each of the four values of a E {0° , 100,
12° , 15° ) the packer has been inflated up to the point where the membrane touches a
borewall corresponding to an expansion ratio of A2 = 3. The computation has then been
extended to touch-wall pressure plus 0.1 MPa and touch-wall pressure plus 10.0 MPa for
each value of a as simulation of the operational working condition of the packer.

The numerical values used in the following examples were for a 10 cm (p = 0.05) diameter
1 m ( = 0.5) long packer with a 1 cm (h0 = 0.005) thick membrane of material represented
by the strain energy function (29) reinforced with cords spaced every 5 mm (A = 0.005). A
appears only in the final computation of r and 8.

Note that the angle 3 of the cords in the deformed configuration can be determined from
the relation (9) i.e.

sin(p3) = A2 sin(a) . (35)

once the expansion ratio A2 has been determined as a function of position on the membrane.

Inflation pressure and cords tension
Increasing values of a require increasing values of the packer inflation pressure P to reach
the same expansion ratio A2 = 3. Figure la shows the shape of the unconstrained deformed
membrane at the four values of a. The respective inflation pressures (0.143, 0.190, 0.237 and
0.639 MPa) increase by 33%, 66% and 347% with respect to the inflation pressure for a = 0°.
This effect, combined with the direct effect of a ( is roughly proportional to 1/cos /3), is
detrimental to the performance of the packer since it results in an increased level of tension
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Fig. 1. P = 'touch-wall' pressure.

in the cords. Figure lb shows the maximum tension in the cords increasing by 82%, 154%
and 809% again with respect to the cords tension for a = 0° . Note that the highest level of
cords tension is reached at the point where the membrane meets the wall.

As the inflation pressure is increased beyond the touch-wall value, the membrane is
constrained by the borewall; the maximum shear stress remains constant (Figs. 1c, 2c and 3c)
since it is controlled by the expansion ratio, itself limited by the borewall; the tension in the
cords increases and, although the relative influence of a decreases, its effect remains
substantial even at pressure as high as touch-wall pressure plus 10 MPa (+20%, +34% and
+74%; Fig. 3b). Also worth mentioning is the effect of a on the half-length of contact
between the membrane and the borewall which is reduced from 0.359 m to 0.295 m (-18%)
to 0.262 m (-27%) and to 0.175 m (-51%) for the four respective values of a at the high
inflation pressure (Fig. 3a).
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Fig. 2. P = 'touch-wall' pressure + 0.1 MPa.

The difference between the inflation pressure and the touch-wall pressure is the pressure
with which the membrane is pressed against the borewall (neglecting the borewall deforma-
tion). This is the pressure which energises the sealing action of the packer. A low touch-wall
pressure will therefore result in a lower final inflation pressure for a same sealing action.

Elastomer shear
Increasing values of a result in increasing values of shear strain 3y in the elastomer although
this effect is not pronounced for low values of a. Figure 4 shows y plotted versus A2 E [1, 3]
for five values of a E {0(, 100, 120, 15° , 200). Going from a = 0 to a = 10° increases the shear
strain by 10% for an expansion ratio of 3. As seen in the figure, this effect increases
dramatically for higher but less relevant values of a. Note the high level of shear (y = 0.78
(r/ 4 ) corresponds to an angle of 90° being folded to 45°) imposed on the elastomer at an
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(a) (b)
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Fig. 3. P = 'touch-wall' pressure + 10 MPa.

expansion ratio of A2 = 3 even for a = 0. The shear strain is the angle (in radian) by which a
rr/2 angle is deformed i.e.:

y= -2 arctanA) (36)

which combined with (6) yields the following expression of y as a function of a and A2.

y - - 2 arctan (37)
xy 2 A2 cos a

The resulting shear stress in the elastomer are presented in Figs. c, 2c and 3c.

A,
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Fig. 4. Shear strain vs. expansion ratio.

Note that the value of a determines the maximum expansion ratio geometrically possible (6):

1
A2max sin (38)

A2mx = 3 > a = 19.50 (39)

Multi layered cords
It should be noted that the two layers of cords crossing each other (a 0) is a design feature
which is not required for the integrity of the packer. The cord reinforcement is required to
support the high meridian tension which takes place in the membrane sections located in the
annulus between the borewall and the packer mandrel. This meridian reinforcement
restrains the membrane from expanding axially; no azimuthal (hoop) reinforcement is
needed since the radial expansion is constrained by the borewall. Therefore, a value of a = 0
is acceptable and even desirable in view of the previous considerations on the influence of a
on the inflation pressure P, the cords tension r and the elastomer shear strain y.

From equation (11) and (6) the spacing between cords is

2 · 2
hA N1- A2 sin a

= AA A2 = A 2 (40)cos a

The derivative of by A2

d8 A 1 - 2A~ sin2a
dA2 cosa 1 n2 a (41)dA2 cos a 1- 2si 2

shows the presence of a maximum
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Table 1. Maximum spacing between cords

a A2 (AlA2 )mx (ilA2)A2=3

00 d/dA2 >0 VA,2 A2 3.00
10° 4.07 2.92 2.60
12° 3.4 2.46 2.40
15° 2.7 2.00 1.96

1
A2 -= sin (42)

The influence of a on the maximum spacing between cords max is shown in Table 1. The
second column shows the value Ah at which 6max occurs.

Two layers of closely spaced cords are often used in order to limit the extrusion of the
elastomer between cords. Unfortunately, this method tends to defeat its own purpose:
closely spaced cords leave little elastomer material in-between cords resulting in destructive
level of shear in the surrounding elastomer. This leads to the debonding of the cords which
then are no more maintained equally spaced and tend to bundle leaving large gaps of
unsupported elastomer subject to extrusion under high inflation pressure. This has been
shown experimentally to be the case by Newburn [5].

Design suggestions
In view of these considerations the following design approach is proposed. The membrane is
to be composed of a single layer of cords laid along the meridian of the packer (a = 0). The
spacing between the cords is to be such as to leave space for a hole or a notch between each
two cords as shown in Fig. 5 in order to limit the level of strain due to A2 in the elastomer
in-between the cords. This feature is to avoid debonding of the cords and thereby maintain
the cords equally spaced.

Experimental evidence [6] indicates that in-homogeneities in the elastomer can result in
non-uniform stretching of the elastomer leading to nonequal spacing of the cords and

Unstretched Stretched

K <=: 0 => C=

Unstretched Stretched

Fig. 5.
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extrusion of the elastomer. Although it is expected that the hole or notch arrangement will
by itself be sufficient to keep the cords equally spaced, as a further remedy to the problem it
might be useful to constrain the maximum spacing between cords by a series of flexible wires
placed radially in the hole or notch between cords. As an example, a maximum packer ex-
pansion ratio of 3 would lead to a length of wire limiting the local expansion ratio to, say, 3.3.

Borewall shear
The two ends of the packer are free to move axially; one end is built to slide along the
packer mandrel; the other end is fixed to the mandrel which can move axially with little
restraint from the compliant string holding the packer tool in the hole. As a consequence,
the mandrel offers no axial support to the membrane and the axial force resulting from the
pressure across the membrane over the annulus section is entirely supported by the friction
between the membrane and the borewall. When a high differential pressure is imposed
across the packer, the axial force applied on the packer results in high level of shear stress at
the interface between the membrane and the borewall which could lead, especially with
openhole in weak formations, to slippage, high deformation and failure of the packer.

4. Conclusion

Using a membrane theory, an analytical solution has been reached for the deformation of a
packer membrane reinforced with inextensible cords. This model gives the deformation of
the membrane and the levels of strain and stress in the membrane and the cords. Although,
as it is, the model shows the influence of the various design parameters on the behaviour and
integrity of the packer, the model should now be checked against experimental data to
ascertain the limit of its validity.

The main issue for the integrity of the membrane seems to be the extrusion of the
elastomer in-between un-equally spaced cords. The traditional design of two layers of cords
crossing each other does not guarantee equally spaced cords in the inflated state because of
debonding of the cords. It is suggested that a single layer of cords laid along the meridian of
the packer and inbedded in the elastomer with some added compliance in-between the cords
(hole or notch) is more likely to offer a solution.
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